Site-specific growth of polymers on silica rods.

نویسندگان

  • Bo Peng
  • Giuseppe Soligno
  • Marlous Kamp
  • Bart de Nijs
  • Joost de Graaf
  • Marjolein Dijkstra
  • René van Roij
  • Alfons van Blaaderen
  • Arnout Imhof
چکیده

Colloids specifically developed for self-assembly (SA) into advanced functional materials have rapidly become more complex, as this complexity allows for more ways to optimize both the SA process and the properties of the resulting materials. For instance, by creating 'patchy' particles more open structures can be achieved through directional interactions. However, the number of ways in which site-specific chemistry can be achieved on particle surfaces is still limited. Here, we show how polymer patches can be specifically grown onto only the flat end of bullet-shaped silica rods by utilizing a subtle anisotropy in surface tension and shape caused by the growth mechanism of the rods. Conversely, if the bullet-shaped silica rods are used as 'Pickering-emulsion' stabilizers the same surface tension effects exclusively direct the orientation of the rods into a 'hedgehog-morphology'. Finally, we demonstrate how an external electric field can direct the particles in a 'vectorial' way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of monodisperse high-aspect-ratio colloidal silicon and silica rods.

We describe the synthesis and the physical properties of suspensions of colloidal silicon and silica rodlike particles. In addition to pure silicon and pure silica rods, we have also synthesized silicon rods with a silica shell and silica rods with a fluorescent silica layer. Pre-patterned p-type (100) silicon wafers were electrochemically etched in electrolyte solutions containing hydrogen flu...

متن کامل

Synthesis of uniform silica rods, curved silica wires, and silica bundles using filamentous fd virus as a template.

We explored fd as a template to direct the formation of silica nanomaterials with different morphologies through simple sol-gel chemistry[1]. Depending on the conditions silica nanowires can be formed, which seem to accurately transcript the bending conformation and the length of the fd viruses in solution. But also surprisingly straight silica rods may be formed, and under other conditions bow...

متن کامل

Seeding-growth of helical mesoporous silica nanofibers templated by achiral cationic surfactant.

Helical mesoporous silica nanofibers with parallel nanochannels were synthesized in high yield via a novel seeding-growth method by using the achiral cationic surfactant cetyltrimethylammonium bromide (CTAB) as template without auxiliary additives. A general entropy-driven model taking into account the icelike structure water due to the hydrophobic effect was proposed to explain the formation o...

متن کامل

Toward Coordinated Colloids: Site-Selective Growth of Titania on Patchy Silica Particles

Rational synthesis of coordinated spherical colloids is reported by site-selective growth of secondary hemispherical patches on primary spherical particles with quasi-defined coordination numbers and positions. We clarify the importance of mass transport phenomena on the site-specific secondary nucleation/growth in nanoparticulate colloidal systems. By comparing ultrasonic and conventional agit...

متن کامل

Separation of ‎STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method

Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically.  ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 48  شماره 

صفحات  -

تاریخ انتشار 2014